Practice Test No. 1

Show all of your work, label your answers clearly, and do not use a calculator.

Problem 1 State the (informal) definition of a limit. (Careful, it's surprising easy to make a logical mistake when rephrasing this definition.)

to a, fix) = L of, as x get closer and closer to L.

Problem 2 Evaluate the limits below. You do not have to show any work for this problem.

problem.
a
$$\lim_{x \to -2} \frac{x+2}{x^2-4} = \lim_{x \to -2} \frac{x+2}{(x+2)(x-2)} = \lim_{x \to -2} \frac{1}{(x+2)(x-2)} = \lim_{x \to -2} \frac{1}{(x+2)(x$$

b
$$\lim_{x\to 4^-}\frac{1}{\sqrt{4-x}}$$
 = ∞

$$c \lim_{x \to \infty} \frac{x^2 - 1}{8x^2 - 8x} = \frac{1}{8}$$

$$d \lim_{x \to 3} \frac{x-3}{x^2-x-6} = \lim_{X \to 3} \frac{X-3}{(X-3)(X+2)} = \lim_{X \to 3} \frac{1}{X+7} = \frac{1}{5}$$

$$e \lim_{x \to 0} \frac{\sin(x)}{x} = \begin{bmatrix} \\ \end{bmatrix}$$

$$\mathbf{f} \quad \lim_{x \to \infty} \frac{\sin(x)}{x} \quad \mathbf{\Xi} \quad \bigcirc$$

Problem 2 Find the average rate of change of the function $f(x) = 5x^2 + 4$ on the interval [-1, 2].

$$(Airg. nate of change) = \frac{f(2) - f(-1)}{2 - (-1)}$$

$$= \frac{5(2)^2 + 4 - (5(-1)^2 + 4)}{2 + 1}$$

$$= \frac{24 - 9}{3}$$

Problem 3 Prove that the equation $x^3 - e^x = 0$ has a solution on the interval [0,3]. Carefully justify your answer. (Hint: Remember that $2.718 \approx e < 3$).

 $f(x) = x^3 - e^x$ is continuous, because x^3 is continuous and e^x is continuous. Therefore, we can use the IVT, because $f(0) = 0^3 - e^0 = 0 - 1 = -1$ and $f(3) = 3^3 - e^3 > 0$ because $e \times 3$.

Therefore, there is some value $e \times 3$.

Which f(c) = 0

Problem 4 State the definition of what it means for a function f(x) to be continuous at a point a (assume that a is not an endpoint of the domain).

f(x) is continuous at a point a if lim f(x) = f(a).

Problem 5 Use the below graph to answer this question:

- a Find $\lim_{x\to -1} f(x)$.
- b Find $\lim_{x \to 1^+} f(x)$. \supseteq
- c Find $\lim_{x\to 1^-} f(x)$.
- d Find $\lim_{x \to 1} f(x)$. does not exist.
- e Is f(x) continuous at x = -1? Why or why not?

f Is f(x) continuous at x = -2? Why or why not?

g Is f(x) continuous? Why or why not?

for, because for is continuous of every point in its

Problem 4 Evaluate, showing your work:

$$\lim_{x \to 0} 5x^2 + 10x + \sin(x) + e^x$$

The function
$$f(x) = 5x^2 + 10x + sin(x) + e^x$$
is continuous, so $\lim_{x\to 0} f(x) = f(0)$

$$= 0 + 0 + 0 + 1$$

$$= 1$$

Problem 5 Evaluate, showing your work:

$$\lim_{x \to 1} \frac{-x^2 - 4x}{x^2 + 5x - 4}$$

Rational functions are continuous, and
$$\chi = 1$$
 is in the domain of $f(x) = \frac{-\chi^2 - 4\chi}{\chi^2 + 5\chi - 4}$, so $\lim_{\chi \to 1} f(\chi) = f(1) = \frac{-1 - 4}{1 + 5 - 4} = \frac{-5}{2}$

Problem 6 Evaluate, showing your work:

$$\lim_{x \to 4} \frac{x - 4}{x^2 - 3x - 4}$$

Rational functions are continuous, but
$$x = 4$$
is mot in the domain of $f(x) = \frac{x-4}{x^2-3x-4}$, so we have to do nome work:

$$\lim_{x \to 4} \frac{x-4}{x^2-3x-4} = \lim_{x \to 4} \frac{x-4}{(x-4)(x+1)} = \lim_{x \to 4} \frac{1}{x+1} = \frac{1}{5}$$

Problem 7

a Find the slope of the tangent line (i.e. the instantaneous rate of change) for the function $f(x) = \frac{1}{3x+5}$ at the point x = 1, i.e. find

$$=\lim_{h\to 0} \frac{3(1+h)+5}{3(1)+5}$$

$$=\lim_{h\to 0} \frac{3(1+h)+5}{3(1)+5}$$

$$=\lim_{h\to 0} \frac{1}{3(1+h)+5} - \frac{1}{3(1)+5}$$

$$=\lim_{h\to 0} \frac{1}{3(1+h)+5} - \frac{1}{3(1+h)+5}$$

$$=\lim_{h\to 0} \frac{1}$$

b Now find the equation of the tangent line for the function $f(x) = \frac{1}{3x+5}$ at the point x=1

The tangent line to f(x) at x = (is the line with the alope we found above $\left(\frac{-3}{64}\right)$ that goes through the point (1, f(1)), so $y - \frac{1}{3(11+5)} = \left(\frac{-3}{64}\right)(x-1)$ is the equation for the tangent line.

Problem 8

a Find the slope of the tangent line (i.e. the instantaneous rate of change) for the function $f(x) = \sqrt{2x+1}$ at the point x = 3, i.e. find

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \left(\frac{1}{h} \right) \left(\int 2(x+h) + 1 - \int 2x + 1 \right)$$

=
$$\lim_{h\to 0} \frac{\int 2(3+h)+1}{h} - \int 2(3)+1 / \int 2(3+h)+1 + \int 2(3)+1 / \int 2(3+h)+1 + \int 2(3)+1 / \int 2(3)+1$$

$$=\lim_{h\to 0}\frac{(2(3+h)+1)-(2(3)+1)}{h(\sqrt{2(3+h)+1}+\sqrt{2(3)+1})}$$

$$\frac{2}{h=0} \lim_{h \to 0} \frac{6+2h+1-6-1}{h(2h+7+7)}$$

$$= \lim_{h \to 0} \frac{2}{f_{2h+7} + J_{7}} = \frac{2}{J_{7} + J_{7}} = \frac{2}{2J_{7}} = \frac{1}{J_{7}}$$

b Now find the equation of the tangent line for the function f(x) = at the point x = 3

The tangent line is given by the line with the rough we found above (17) that goes through the point (3, f(3)), so

 $y-\sqrt{2(3)+1}=(\sqrt{5})(x-3)$ is the equation of the tangent line to for at x=3.

Problem 9 Find the value of a such that the function f(x) given below is continuous on the domain $(-\infty, \infty)$. Once you have found the value of a, explain why f(x) is continuous, citing the definition of continuity.

$$f(x) = \begin{cases} a \sin(x), & x \le \pi/2 \\ ax^2 - 3, & x > \pi/2 \end{cases}$$

For every value of a, asin(x) is continuous, and ax-3 is continuous, so be only need to check that f(x) is Continuous at $x = \frac{7C}{2}$ asin(=) = a(=) -3 Check: lim f(x) = asin (70) a=a/7/2-3 $= \left(\frac{-1}{1 - \frac{1C^2}{4}}\right)$ f(=) = asin(=) $a - a\left(\frac{T^2}{4}\right) = -3$ $a\left(1-\frac{\pi^2}{4}\right)=-3$ $a = \frac{-3}{1 - Tc^2}$ that lim f(x) = lim f(x) Chech asin(=) = a(=)-3 this is how we robbed for a roll true $a = \frac{-3}{1-\frac{T}{4}}$. Now then that $\lim_{x \to \infty} f(x) = f(\frac{T}{2})$

Problem 10 Find all vertical, horizontal, and slant asymptotes of the following functions:

$$\mathbf{a} \quad f(x) = \frac{3x^2 + 4x + 1}{x^2 - 1}$$

where $x^2-1=0 \Rightarrow x=1$ and Vertial asymptotes:

Horizontal asymptotes: $\lim_{x\to\infty} \frac{3x^2 + 4x + 1}{x^2 - 1} = \frac{3}{1} = 3$

and $\lim_{x \to -\infty} \frac{3x^2 + 4x + 1}{x^2 - 1} = \frac{3}{1} = 3$

No y=3 is the only horizontal asymptote. Slaut asymptotes: none, because fix has a horizontal asymptote.

Where 3x-4=0 >> X= = = 3 Vertical asymptotes:

lim f(x) = 20, lim = -00, Horizontal arymptotes:

so no horizontal arymptotes.

 $3x - 4 x^2 - 3x + 2$ Slant asymptotes:

 $-(\chi^2 - \frac{4}{3}\chi)$ == X+2

Mant asymptote.

Problem 11 A function f(x) is said to have the *intermediate value property* on an interval [a,b] if, for any value $y=y_0$ between f(a) and f(b), there exists a value x=c such that $f(c)=y_0$. With this definition, we can restate the Intermediate Value Theorem as follows: If f(x) is continuous on [a,b], then f(x) has the intermediate value property on [a,b]. Use this to answer the following questions.

a Does the function pictured in the graph below have the intermediate value property on the interval [-2, 1]?

b Does the function pictured in the graph below have the intermediate value property on the interval [-2, 1]?

Yes.

c In general, if a function f(x) has the intermediate value property on the interval [a,b], how does the range of the function f(x) relate to the interval [f(a), f(b)]?

The range bey to include the interval [fas, fils] but its can include other prosits as well, e.g. ree the graph in part as